MOLA: the Future of Mars Global Cartography T. C. Duxbury¹, D. E. Smith², M. T. Zuber³, H. V. Frey², J. B. Garvin², J. W. Head⁴, D. O. Muhleman⁵, G. H. Pettengill³, R. J. Phillips⁶, S. C. Solomon³, H. J. Zwally², W. B. Banerdt¹ The MGS Orbiter is carrying the high-precision Mars Orbiter Laser Altimeter (MOLA) which, when combined with precision reconstructed orbital data and telemetered attitude data, provides a tie between inertial space and Mars-fixed coordinates to an accuracy of 100 m in latitude / longitude and 10 m in radius (1 sigma), orders of magnitude more accurate than previous global geodetic / cartographic control data. Over the 2 year MGS mission lifetime, it is expected that over 30,000 MOLA Global Cartographic Control Points will be produced to form the basis for new and re-derived map and geodetic products, key to the analysis of existing and evolving MGS data as well as future Mars exploration. ¹Jet Propulsion Laboratory, ²Goddard Space Flight Center, ³Massechusettes Institute of Technology, ⁴Brown University., ⁵California Institute of Technology, ⁶Lunar and Planetary Science Institute